
Understanding
Self-Predictive RL

Tianwei Ni, Benjamin Eysenbach, Erfan Seyedsalehi, Michel Ma,
Clement Gehring, Aditya Mahajan, Pierre-Luc Bacon

Donghu Kim

Representation Learning
Example: Visual tasks (Image classification, Segmentation, Depth estimation …)

A classic problem, curse of dimensionality.

We need to embed the input into a low-dimensional space, but that causes information loss.

Then what information should we keep, and what should we discard?

Obviously, the ones necessary to solve our task!

Representation Learning = Learning to encode large inputs into smaller embeddings,
while preserving the information required for the task(s).

Representation Learning
End-to-end deep-learning is one form of representation learning.

e.g., CNN-encoder + MLP-predictor

Self-supervised / Unsupervised methods get representations useful for downstream tasks.

e.g., DINOv2

Representation Learning for Reinforcement Learning
Similarly, representation learning is necessary in reinforcement learning as well.

e.g., Any model-free algorithm with deep networks (DQN, SAC, DDPG, …)

Again, these could be learned by end-to-end deep learning,

or by self-supervised / unsupervised objectives.

e.g., Dreamer, TD-MPC, CURL, SPR, …

Introduction
Representation learning has become a hot topic in RL since around 2020.

CRAR

DeepMDP SPR

LSFM

PSR

EfficientZero

TD-MPC
ALM

OFENetDreamer

PlaNetTCRL
(TD-MPC w/o planning)

SAC-AE
(SAC + AutoEncoder)

CURL
DRIML

TD7

MuZero

DBC

VPN

What should we choose, out of all these?

Introduction
Representation learning has become a hot topic in RL since around 2020.
What if I told you that most of these boil down to latent self-prediction vs observation reconstruction?

𝜙𝐿
𝜙𝑂 ignore these guys :)

CRAR

DeepMDP SPR

LSFM

PSR

EfficientZero

TD-MPC
ALM

OFENetDreamer

PlaNetTCRL
(TD-MPC w/o planning)

SAC-AE
(SAC + AutoEncoder)

CURL
DRIML

TD7

MuZero

DBC

VPN

Basic Notations
Notation will be focused on POMDPs than MDPs.

POMDP: Partial access to the world/environment via observation 𝑜𝑡.

MDP: Full access to the world/environment via state 𝑠𝑡.

Unlike MDP, POMDP agents benefit from using history ℎ𝑡 = ℎ𝑡−1, 𝑎𝑡−1, 𝑜𝑡 = 𝑜1, 𝑎1, 𝑜2, 𝑎2, … 𝑜𝑡

History Representations

Encoder 𝜙

History representation 𝑧 = 𝜙(ℎ)

Abstraction Theory
“Abstraction can be thought of as a process that maps the ground representation, the
original description of a problem, to an abstract representation, a much more compact and
easier one to work with.” (Li et al., 2006)

…so just embedding to a latent space.

Abstraction theory defines what kind of abstraction we want.

X-abstraction : The encoder provides an X-abstraction if it preserves all necessary information required for X.

[1] Towards a Unified Theory of State Abstraction for MDPs., Li et al., AIandM 2022.

Representation Learning = Learning to encode large inputs into smaller embeddings,
while preserving the information required for the task(s).

3 Key Abstractions for MDPs

1. Information for predicting the return → 𝜙𝑄∗ (Return prediction)

2. Information for predicting environment dynamics → 𝜙𝐿 (Latent self-prediction)

3. Information for predicting environment dynamics & observations → 𝜙𝑂 (Observation prediction)

Representation Learning = Learning to encode large inputs into smaller embeddings,
while preserving the information required for the task(s).

What kind of information should be preserved in RL?

3 Key Abstractions for MDPs
1. Q*-irrelevance abstraction (𝜙𝑄∗)

= 𝜙𝑄∗ preserves necessary information for predicting the true return Q*.

= Formally, 𝜙𝑄∗ ℎ𝑖 = 𝜙𝑄∗ ℎ𝑗 → 𝑄∗ ℎ𝑖 , 𝑎 = 𝑄∗ ℎ𝑗 , 𝑎 , ∀𝑎

Learned by default in end-to-end model-free algorithms (DQN, SAC, ...)

Also learned by default in classic model-based algorithms (Dyna, Dreamer?)

3 Key Abstractions for MDPs
2. Self-predictive abstraction / Model-irrelevance abstraction (𝜙𝐿 = RP + ZP)

= 𝜙𝐿 preserves necessary information for expected reward prediction (RP)

= 𝜙𝐿 preserves necessary information for predicting environment dynamics (reward + transition dynamics).

AND for next latent (z) distribution prediction (ZP)

*RP: There exists a function 𝑅𝑧 capable of predicting the rewards from the representation 𝜙𝐿 ℎ = The representation have all information for reward prediction

A weaker version of ZP is EZP – preserving information for expected next latent prediction (EZP)

3 Key Abstractions for MDPs
3. Observation-predictive abstraction / Belief abstraction (𝜙𝑂 = RP + OP + Rec)

= 𝜙𝑂 preserves necessary information for predicting environment dynamics and its observations.

= 𝜙𝑂 preserves necessary information for expected reward prediction (RP)

AND for next observation (o) prediction (OP)

AND is a recurrent encoder (Rec)

Observation reconstruction (OR) is a condition closely related to OP.

Rec condition is satisfied by regular feedforward or recurrent networks, but not by Transformers.
(assume to be always satisfied)

[1] Approximate information state for approximate planning and reinforcement learning in partially observed systems., Subramanian et al., J. Mach. Learn. Res., 2022.

Implication Graph
Authors prove that the conditions imply each other!

e.g., ZP + OR = OP (next latent prediction + obs reconstruction = next obs prediction)

*The source nodes of the edges with the
same color together imply the target node.

In the same sense, abstractions also imply each other.

𝜙𝑂 𝜙𝐿 𝜙𝑄∗

e.g., 𝜙𝑂 = OP + RP + Rec = ZP + OR + RP + Rec = 𝜙𝐿 + OR + Rec

Back to Introduction
Representation learning has become a hot topic in RL since around 2020.

CRAR

DeepMDP SPR

LSFM

PSR

EfficientZero

TD-MPC
ALM

OFENetDreamer

PlaNetTCRL
(TD-MPC w/o planning)

SAC-AE
(SAC + AutoEncoder)

CURL
DRIML

TD7

MuZero

DBC

VPN

Back to Introduction
Representation learning has become a hot topic in RL since around 2020.
What if I told you that most of these just end up learning either 𝜙𝐿 or 𝜙𝑂?

(PlaNet)

* SAC-AE (𝜙𝑂) = 𝜙𝑄∗ + OR
* CURL (unknown) = 𝜙𝑄∗ + weak OR via contrastive loss
* TD7 (unknown) = ZP

(+VPN)

𝜙𝐿 = RP + ZP
𝜙𝑂 = RP + OP + Rec

Minimalist Representation Learning
If all these methods end up with the same abstraction, why not use the most minimal condition set?

Minimalist 𝜙𝑂 ,, ,, 𝜙𝑄∗ + OP ,, ,,

𝜙𝐿 = RP + ZP
𝜙𝑂 = RP + OP + Rec

How Should We Learn ZP? a.k.a. theoretical justification for stop-grad

The self-predictive nature of latent prediction (ZP) poses a significant challenge.

The infamous representation collapse: ZP can be satisfied by mapping every input into a single latent.

Mitigated by (1) Other losses like RP, or (2) Contrastive loss, or (3) Detaching the target encoder’s gradient

ZP lossZP loss

How Should We Learn ZP? a.k.a. theoretical justification for stop-grad

tl;dr

Theoretically, latent self-predictive losses are problematic in stochastic environments.

Theoretically, using stop gradient makes the problem less bad.

Authors will use stop-gradient from now on.

How Should We Learn ZP? a.k.a. theoretical justification for stop-grad

The self-predictive nature of latent prediction (ZP) poses a significant challenge.

The infamous representation collapse: ZP can be satisfied by mapping every input into a single latent.

Ideal ZP loss is unusable due to double sampling issue (i.e., cannot sample from the environment twice).

Instead, practical L2 or KL loss are used. However, these are theoretically okay only in deterministic MDPs.

How Should We Learn ZP? a.k.a. theoretical justification for stop-grad

Luckily, stop gradient operation mitigates the problem.

For L2 loss specifically, using stop gradient guarantees stationary point (online target doesn’t).

For linear models, stop gradient provably avoids representational collapse.

Minimalist 𝜙𝐿 Algorithm

𝜙𝑄∗ + ZP (with L2 loss and stop-gradient)

Any Model-free algorithm + Auxiliary latent self-prediction loss

Minimalist 𝜙𝐿 Algorithm

Enables comparing 𝜙𝑄∗ , 𝜙𝐿, 𝜙𝑂 without changing the RL algorithm.

Set 𝜆 = 0→ 𝜙𝑄∗

Change ZP to OP → 𝜙𝑂

Does The Minimalist Algorithm Work?
Environment: Mujoco
Base algorithm: ALM(3) → Mujoco SOTA

Minimalist 𝜙𝐿 (ZP-L2, ZP-FKL, ZP-RKL) outperforms ALM(3) in all cases except Humanoid-v2.

“due to superior
policy optimization”

Both 𝜙𝐿, 𝜙𝑂 outperformed 𝐿𝑄∗ (TD3).

𝜙𝐿 vs 𝜙𝑂

Environment: Distracting Mujoco (Gaussian noise)
Base algorithm: ALM(3) → Mujoco SOTA

𝜙𝐿 algorithms were more robust than 𝜙𝑂 (OP-L2, OP-FKL).

Hypothesis: Observation prediction (𝜙𝑂) is fragile to distractors.

𝜙𝐿 vs 𝜙𝑂

Environment: MiniGrid (POMDP + Sparse reward)
Base algorithm: R2D2 (Distributed RNN)

R2D2 + OP (𝜙𝑂) was more effective than R2D2 + ZP (𝜙𝐿)

Hypothesis: Observation prediction (𝜙𝑂) is fragile to distractors.

End-to-end vs Phased

Environment: MiniGrid (POMDP + Sparse reward)
Base algorithm: R2D2 (Distributed RNN)

End-to-end learning (OP, ZP) was way more effective than phased ones (RP+OP, RP+ZP)

Hypothesis: End-to-end learning (e.g., TD-MPC) and phased learning (e.g., Dreamer) won’t matter

Conclusion

End-to-end learning is just as effective as phased learning (TD-MPC vs Dreamer).

𝜙𝐿 vs 𝜙𝑂 depends on the task.

Noisy/distracting tasks → Try 𝜙𝐿

Representation learning in RL boils down to latent self-prediction vs observation reconstruction.

Sparse-reward tasks → Try 𝜙𝑂

Choose either 𝜙𝐿 , 𝜙𝑂 over 𝜙𝑄∗ .

